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Goal of this series of talks

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics
2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: limits

3 Representation theory: Categories of modules, semi-simplicity,
isomorphism classes i.e. the framework of Kronecker coefficients.

4 MRS factorisation: A local system of coordinates for Hausdorff
groups.
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CCRT[16] Higher order BTT (part 2).
Asymptotic conditions and character properties.

Disclaimer. – The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.

1 Magnus groups for various monoids

2 Some subgroups of the Magnus group

3 Paths drawn on the Magnus group and subgroups.

4 Local analysis

5 Integration and Picard’s process

6 Analysis of the classical BTT

7 todo: from now Definition of evolution equations

8 Computations with differential modules

9 Some concluding remarks
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Introduction

0 Today, we will use the same analysis/synthesis method as in CCRT[16] (part
one) and use the information gathered to consider solutions of the BTT as
paths drawn on the Magnus group w.r.t. character properties.

1 The mental process for the making of the BTT [10] with various conditions
will be the following

Differentiation: observing the tangent space→ Integration→︸ ︷︷ ︸
Analysis

Technical condition→ NSC→ Proof & Boundaries︸ ︷︷ ︸
Synthesis/Integration

2 This method is not new, it is that of Archimedes (-287, -212) [1], Liu Hui
(220-280) [15] and Cavalieri (1598-1647) [6]. Archimedes work was
originally thought to be lost, but in 1906 was rediscovered in the celebrated
Archimedes Palimpsest.
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Iterated integrals and shuffle properties

3 We have seen last time BTT and its link with iterated integrals
(initial condition at some z0 ∈ Ω).

4 Today, we will see why, integrating it, we have shuffle properties (i.e.
the generating series being a shuffle character) and how this property
can survive to variations (asymptotic initial conditions, other
mutipliers).

5 Let us start with the datum of
1 a domain Ω ⊂ C, a base point z0 ∈ Ω, an alphabet X (both

non-empty)
2 a family of “inputs” (ux)x∈X ux ∈ H(Ω)

6 The system S ′ = (
∑

x∈X ux x)S ; S(z0) = 1C〈〈X 〉〉 has a unique
solution given by the limit of Picard’s process

S0 = 1X∗ ; Sn+1 = 1X∗ +

∫ z

z0

M.Sn
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Iterated integrals and shuffle properties/2

7 Existence of the limit of Picard’s process is due to the fact that the
multiplier is without constant term (and then this is a general fact,
true with all M ∈ H(Ω)+〈〈X 〉〉).

8 Now, we need to construct a sort of tensor product adapted to linear
forms.

9 In fact, we will need to compute with the monoid of bi-words
X ∗⊗X ∗ because, if S ∈ A〈〈X 〉〉, then ∆x (S) ∈ A〈〈X ∗⊗X ∗〉〉, where
∆x (S) is the double series

∆x (S) =
∑
w∈X∗

Summable ?︷ ︸︸ ︷
〈S |w〉

∑
I+J=[|w |]

w [I ]⊗ w [J]

︸ ︷︷ ︸
∆x (w)

(1)
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Iterated integrals and shuffle properties/3

10 Today, the monoid of bi-words, i.e. X ∗ ⊗ X ∗ ' X ∗ × X ∗, defined by

(u1 ⊗ v1)(u2 ⊗ v2) = (u1u2 ⊗ v1v2) (2)

will be sufficient.

11 It is the class of monoids M = 1M +M+ such thata⋂
n≥1

(M+)n = ∅ (3)

12 Note that (M+)n is the set of m ∈M which can be factorized in n
non-trivial factors i.e. m = u1 · · · un ; ui 6= 1.

13 Equation (3) gives rise to the length function
l(m) = sup{n ∈ N | m ∈ (M+)n} with (M+)0 =M

14 It satisfies l−1(0) = 1M ; l(uv) ≥ l(u) + l(v) .

aLocally finite monoids, see [13].
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Mini theory of LF-NCDE

15 Let M be a locally finite (LF) monoid, every NCDE

S ′ = M.S ; 〈S |1M〉 = 1Ω (4)

where S ∈ H(Ω)〈〈M〉〉 and M ∈ H(Ω)+〈〈M〉〉. Admit solutions (indeed even
a unique solution) such that

S(z0) = 1Ω1X∗ = 1H(Ω)〈〈M〉〉 (5)

16 Picard’s process

S0 = 1X∗ ; Sn+1 = 1X∗ +

∫ z

z0

M.Sn (6)

converges to a series SPic
z0

and the set of all solutions of (4) is the orbit

SPic
z0

. (1 + C+〈〈M〉〉)︸ ︷︷ ︸
Galois group of (4).

(7)
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Mini theory of LF-NCDE/2

17 Now, we will apply this to the BTT (fuschian type, all ax /∈ Ω){
d(S) = M.S with M =

∑
x∈X

λxx
z−ax ; λx 6= 0

S(z0) = 1H(Ω)〈〈X〉〉
(8)

18 Remark 1H(Ω)〈〈X〉〉 = 1H(Ω).1X∗

19 At each point z ∈ Ω, S(z) ∈ C〈〈X 〉〉, so,

1 We can (always) compute ∆x (S(z)) ∈ C〈〈X ∗ ⊗ X ∗〉〉
2 Due to the fact that C is s field, the natural arrow

C〈〈X 〉〉 ⊗C C〈〈X 〉〉 ↪→ C〈〈X ∗ ⊗ X ∗〉〉 is into.
3 We have the equivalences

1 S is a character of (H(Ω)〈X 〉, x , 1X∗).
2 For all z ∈ Ω, S(z) is a character of (C〈X 〉, x , 1X∗).

4 We will see next time, that the group of characters of (C〈X 〉, x , 1X∗)
is a closed subgroup of the Magnus group 1X∗ + C+〈〈X 〉〉.
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Mini theory of LF-NCDE/3

20 Remark: We have implicitely used the one-to-one identification
Functions to series Series of functions

here
A〈〈X 〉〉Ω AΩ〈〈X 〉〉 (9)

21 From this, we see S(z) as a path drawn on some closed subgroup.

Lie Group G

L(G ) (Lie algebra)

S(z)
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Mini theory of LF-NCDE/4

22 The paradigm we will use in the future is that, if S(z) (each
coordinate holomorphic), drawn on the Magnus group is such that

1 S(z0) belongs to some closed subgroup G
2 d(S)S−1[z ] = M(z) belongs, for all z ∈ Ω to the tangent space T1(G ).

Then, S(z) is entirely drawn on G .

Lie Group G

L(G ) (Lie algebra)

S(z0)

S(z)

c

S ′(z)
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Our first subgroup: shuffle characters

23 For today we will content ourselves with the Hausdorff group of the
Hopf algebra (C〈X 〉, x , 1X∗ ,∆conc, ε) (the antipode exists but is not
needed here). Let us recall its features

1 The shuffle product between two words is defined by recursion or
duality (see our paper [9])

2 ∆conc, the dual of conc is defined, within C〈X 〉, by duality
〈∆conc(w)|u ⊗ v〉 = 〈w |uv〉

or combinatorially ∆conc(w) =
∑

uv=w u ⊗ v
3 ε(P) = 〈P|1X∗〉

24 For every Hopf algebra (B, µ, 1B,∆, ε), the set Ξ(B) of characters of
(B, µ, 1B) is a group under convolution (a monoid in case of a general
bialgebra, see our paper [12] Prop. 5.6).

25 Here, due to the fact that C is a field, we can characterize the group
of shuffle characters Ξ(B) by the (algebraic) equations

〈S |1X∗〉 = 1C ; ∆x (S) = S ⊗ S (10)
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Our first subgroup: shuffle characters/2

26 Let us now consider an evolution equation S ′ = M.S in H(Ω)〈〈X 〉〉 with a
primitive multiplier, i.e. for all z ∈ Ω
∆x (M(z)) = M(z)⊗ 1X∗ + 1X∗ ⊗M(z)

27 Then, if S is group-like (for ∆x ) at one point z0 ∈ Ω, it is group-like
everywhere (we will see that the point can be remote).

28 Let us have a look at the proof, from which we will deduce the version with
asymptotic initial condition. We propose the first following statement

Proposition

Let be given, within H(Ω)〈〈X 〉〉, the following evolution equation

S ′ = M.S ; S(z0) = 1H(Ω)〈〈X〉〉 (11)

we suppose that, for all z ∈ Ω, M(z) is primitive (for ∆x ).

Then, for all z ∈ Ω, S(z) is group-like (for ∆x ). This, in view of Slide 9, means
that S is a character of (H(Ω)〈X 〉, x , 1X∗).
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Our first subgroup: shuffle characters/3

Proof
29 Firstly, we transform (11) by ∆x (which commute - easy exercise -

with derivation)

∆x (S)′ = ∆x (S ′) = ∆x (M).∆x (S) ; ∆x (S(z0)) = 1⊗ 1

30 Taking into account that M is primitive, we get

∆x (S)′ = (M ⊗ 1 + 1⊗M).∆x (S) ; ∆x (S(z0)) = 1⊗ 1 (12)

31 Let us see what happens to S ⊗ S

(S⊗S)′
(1)
= S ′⊗S+S⊗S ′ = MS⊗S+S⊗MS = (M⊗1+1⊗M).(S⊗S)

(13)

32 We see that ∆x (S) and S ⊗ S satisfy the same evolution equation
(same multiplier) and same initial condition (at z0).
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Our first subgroup: shuffle characters/4

Proof
33 Then, for every z ∈ Ω, we have ∆x (S(z)) = S(z)⊗ S(z) (and still
〈S(z)|1X∗〉 = 1C).

34 Finally, by the last remark of slide 9, we get that S is a character of
(H(Ω)〈X 〉, x , 1X∗).

Let us try this one.

35 As an excellent exploratory exercise, we can try the multiplier
u0.x0 + u1.x1 + u2.[x0, x1]

with ui ∈ H(Ω).

36 For example, with
u0 = 1/z , u1 = 1/(1− z), u2 =

(
2Li2 + log(z) log(1− z)

)′
we do

not have linear independence of (〈S |w〉)w∈X∗ .

What is the condition ?

15 / 26



First questions and apps.

37 Questions. –
Q1) What are the applications of this situation ?
Q2) What are the consequences ?
Q3) Can we enlarge the scope of this statement to other bialgebras ?

Applications (Q1)

38 All classical (degree-one) multipliers M =
∑

x∈X ux x and also

39 Sums of Lie polynomials (with holomorphic inputs/weights)
M =

∑
x∈X ux Px , where (Px)x∈X is summable.
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Shuffle characters/5

Consequences

40 Within the differential algebra A = (H(Ω), d
dz ), we have the following

Proposition (A)

Let Ω ⊂ C be a domain, X be an alphabet. We consider the evolution equation
on the Magnus group 1X∗ + C+〈〈X 〉〉, S ′ = MS ; S(z0) = 1C〈〈X〉〉 with multiplier
M =

∑
x∈X ux x ∈ (C〈〈X 〉〉)1 (C is a differential subalgebra of A).

Then, S is a shuffle character and, moreover, TFAE (with S =
∑

w∈X∗ α
z
z0

(w)w)

1 The morphism (C〈X 〉, x , 1X∗)→ (spanC{αz
z0

(w)}w∈X∗ ,×, 1Ω) is injective.

2 {αz
z0

(w)}w∈X∗ is C-linearly independent.

3 {αz
z0

(l)}l∈LynX is C-algebraically independent.

4 {αz
z0

(x)}x∈X is C-algebraically independent.

5 {αz
z0

(x)}x∈X∪{1X∗} is C-linearly independent.
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Shuffle characters/6

Widening

41 Setting G , the group of characters of (C〈X 〉, x , 1X∗). We can change, in
Eq. (11), the condition S(z0) = 1 for S(z0) = g with g ∈ G (the trick is to
consider T = S .g−1).

42 Likewise, we can replace the condition S(z0) = 1 by an asymptotic one like
limz→z0 S(z)R(z)−1 = T where R, a counter-term, is a character of
(H(Ω)〈X 〉, x , 1X∗) and T a character (C〈X 〉, x , 1X∗). Then S is a
character of (H(Ω)〈X 〉, x , 1X∗).

43 This property can be used for evolution equation as

S ′ = (
x0

z
+

x1

1− z
)S ; lim

z→0
S(z)e−x0 log(z) = 1H(Ω)〈X〉 (14)

this equation has a unique solution and the reader must be aware that,
contrariwise to those with S(z0) = 1 (with z0 ∈ Ω where there is always a
solution, an Evolution equation of type (14) might have no solution.
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Shuffle characters/7

Widening

44 Indeed, as BTT holds for solutions of
S ′ = M.S ; 〈S |1M〉 = 1Ω (Magnus group condition), we have the following

Proposition (B)

Let Ω ⊂ C be a domain, X be an alphabet, and S be a solution of the evolution
equation (on the Magnus group 1X∗ + C+〈〈X 〉〉), S ′ = MS ; 〈S |1X∗〉 = 1H(Ω) with
multiplier M =

∑
x∈X ux x ∈ (C〈〈X 〉〉)1 (C is a differential subalgebra of A).

Then, if S is a shuffle character (global or at one point), TFAE

1 The morphism (C〈X 〉, x , 1X∗)→ (spanC{〈S |w〉}w∈X∗ ,×, 1Ω) is injective.

2 {〈S |w〉}w∈X∗ is C-linearly independent.

3 {〈S |l〉}l∈LynX is C-algebraically independent.

4 {〈S |x〉}x∈X is C-algebraically independent.

5 {〈S |y〉}y∈X∪{1X∗} is C-linearly independent.
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Concluding remarks

45 We have set the problem of evolution equations on the Magnus group with
left mutiplier (LM-NCDE).

46 We have seen that every regular path drawn on this group is a solution of
a (LM-NCDE).

47 In particular, when the multiplier is primitive (for ∆x ) and a solution is
group-like at one point (or asympotically so), then it is unique and
group-like everywhere (a particular case of the closed subgroup property, see
a forthcoming CCRT).

48 As a particular case of primitive multipliers, we have the (finite or infinite)
sums of letters weighted with “inputs” taken within a differential subfield
(and - forthcoming with localization - domain subalgebra). For these
multipliers we have the BTT and, for group-like (shuffle character) solutions,
we get very strong properties for the algebraic independence of coordinates
w.r.t. the differential subalgebra/field.
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THANK YOU FOR YOUR ATTENTION !
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